The Nijmegen breakage syndrome (NBS1) gene was suggested as a prostate cancer susceptibility gene. This study was undertaken to determine, whether NBS1 expression is linked to clinically or molecularly relevant subgroups of prostate cancer. NBS1 expression was analyzed by immunohistochemistry on a tissue microarray containing 11,152 prostate cancer specimens. NBS1 expression was absent or only weakly detectable in benign prostate. In prostate cancers, NBS1 expression was found in 81.3% of interpretable tumors and was considered strong in 41.3% of cases. NBS1 upregulation was tightly linked to ERG-positive cancers (p<0.0001). Within ERG-negative cancers, strong NBS1 immunostaining was linked to advanced pathological tumor stage, high Gleason grade, and positive nodal status (p<0.0001 each), while high NBS1 immunostaining was only weakly associated with advanced pathological tumor stage in ERG-positive cancers (p=0.0099). A comparison with chromosomal deletions revealed a strong NBS1 upregulation in PTEN-deleted cancers, while deletions of 3p13, 5q21 and 6q15 did not affect NBS1 expression. High NBS1 expression was linked to biochemical recurrence in ERG-negative and PTEN non-deleted cancers (p<0.0001), which was largely driven by high KPNA2 karyopherin alpha 2 expression. In conclusion, our study identifies an association of NBS1 expression with surrogates of genomic instability in prostate cancer including TMPRSS2-ERG rearrangements and PTEN deletion. The prognostic impact of NBS1 expression in ERG-negative, PTEN non-deleted cancers was dependent of the expression status of its interaction partner KPNA2.
Keywords: ERG; NBS1; PTEN; TMA; prostate cancer.
© 2014 UICC.