High throughput sequencing of genetic material recovered from environmental samples (i.e., metagenomics) is becoming the method of choice for either medical or environmental genomic studies. However, the large amount of data and complexity of the sequenced "biomes" present challenges for teasing meaningful results out of the mass. Here, we describe a targeted genomic pipeline which uses fluorescence-activated cell sorting (FACS) in combination with multiple displacement amplification (MDA) of nucleic acids that allows to dissect a complex system into its component parts to facilitate high-quality single-cell, or targeted population, genomic reconstructions of microbial communities. This pipeline is presented with methods for collecting, concentrating, and preserving cells from aquatic and marine environments suitable for flow cytometric processing at a later date.