The complement system is one component of innate immunity that could participate in fetal loss. We have already reported that adipsin, a complement activator in the alternative pathway, is stably expressed in the placenta and that an increase in this expression is related to spontaneous abortion. However, complement inhibitor Crry was concurrently expressed in the placenta, and the role of complement factors during pregnancy was not clear. In the present study, we examined the endogenous regulation of complement factors in placenta and serum by using another model mouse for spontaneous abortion and studied the effect of exogenous complement disruption on pregnancy. Compared to control mice, the CBA/J×DBA/2 model mice had higher expression levels of adipsin in the placenta and serum. Adipsin and complement C3 were localized in the metrial gland and labyrinth regions, and both positive reactive ranges were limited in the maternal blood current in normal implantation sites. These results suggest that extrauterine adipsin hematogenously reaches the placenta, activates complement C3, and promotes destruction of the feto-maternal barrier in aborted implantation sites. Crry was consistently expressed in the placenta and serum and reduced in the resorption sites of CBA/J×DBA/2 mice as compared to normal sites. Injection of recombinant adipsin increased the resorption rate and changed the expression of Th-type cytokines toward a Th1 bias. The present study indicates that adipsin could induce the fetal loss that accompanies the Th1 bias and may be a crucial cause of spontaneous abortion. In addition, the local expression of Crry prevents complement activation in placenta in response to a systemic increase of adipsin.
Keywords: Adipsin; Complement; Crry; IFN-γ; Placenta; Spontaneous abortion.
Copyright © 2014 Elsevier GmbH. All rights reserved.