Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering

Nat Commun. 2014 Feb 28:5:3314. doi: 10.1038/ncomms4314.

Abstract

How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) experiments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of Tc, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.