B7-DC [also known as programmed death ligand 2 (PD-L2)] is a costimulatory molecule expressed predominantly on dendritic cells (DCs) and macrophages. In addition to its coinhibitory receptor, programmed death receptor 1 (PD-1), evidence suggests that B7-DC interacts with an unidentified costimulatory receptor on T cells. B7-DC mutants with selective binding capacity for the costimulatory receptor may be effective in stimulating antitumor immune responses, while avoiding the inhibitory effects of PD-1. In this study, we concomitantly administered a GM-CSF-secreting whole-cell vaccine together with a fusion protein of mutant B7-DC and Fc portion (mB7-DC-Fc), which binds selectively to the costimulatory receptor. This lead to an increased number of tumor antigen-specific cytotoxic T lymphocytes both in the spleen and at the tumor site and complete elimination of established tumors in vivo. In addition, mB7-DC-Fc increased IFN-γ and IL-2 production and decreased IL-4 and IL-10 production in vitro, indicating that mB7-DC-Fc tips the Th1/Th2 balance toward Th1 dominance, which is more favorable for antitumor immunity. Furthermore, mB7-DC-Fc decreased the PD-1(+) proportion of CD8(+) T cells in vitro and tumor-infiltrating CD8(+) T cells in vivo, suggesting that mB7-DC-Fc may maintain tumor-infiltrating CD8(+) T cells in a nonexhausted state. In conclusion, mB7-DC-Fc administration during the T-cell priming phase enhances antitumor effects of vaccine by generating more tumor antigen-specific cytotoxic T lymphocytes and leading to their accumulation at the tumor site. We suggest that this combination approach may be a promising strategy for antitumor immunotherapy.