microRNAs (miRNAs) are important both in early cardiogenesis and in the process of heart maturation. The aim of this study was to determine the stage-specific expression of miRNAs in human fetal heart in order to identify valuable targets for further study of heart defects. Affymetrix microarrays were used to obtain miRNA expression profiles from human fetal heart tissue at 5, 7, 9 and 23 weeks of gestation. To identify differentially expressed miRNAs at each time-point, linear regression analysis by the R limma algorithm was employed. Hierarchical clustering analysis was conducted with Cluster 3.0 software. Gene Ontology analysis was carried out for miRNAs from different clusters. Commonalities in miRNA families and genomic localization were identified, and the differential expression of selected miRNAs from different clusters was verified by quantitative polymerase chain reaction (qPCR). A total of 703 miRNAs were expressed in human fetal heart. Of these, 288 differentially expressed miRNAs represented 5 clusters with different expression trends. Several clustered miRNAs also shared classification within miRNA families or proximal genomic localization. qPCR confirmed the expression patterns of selected miRNAs. miRNAs within the 5 clusters were predicted to target genes vital for heart development and to be involved in cellular signaling pathways that affect heart structure formation and heart-associated cellular events. In conclusion, to the best of our knowledge, this is the first miRNA expression profiling study of human fetal heart tissue. The stage-specific expression of specific miRNAs suggests potential roles at distinct time-points during fetal heart development.