Acute myeloid leukemia (AML) is a clinically heterogeneous disease, yet it is one of the most molecularly well-characterized cancers. Risk stratification of patients currently involves determination of the presence of cytogenetic abnormalities in combination with molecular genetic testing in a few genes. Several new recurrent genetic molecular abnormalities have recently been identified, including TET2, ASXL1, IDH1, IDH2, DNMT3A, and PHF6. Mutational analyses have identified that patients with DNMT3A or NPM1 mutations or MLL translocation have improved overall survival with high-dose chemotherapy. Mutational profiling can refine prognostication, particularly for patients in the intermediate-risk group or with a normal karyotype. CD25 expression status improves prognostic risk classification in AML independent of established biomarkers. Biomarkers such as 2- hydroxyglutarate in IDH1/2-mutant AML patients predict patient responses and minimal residual disease. These recent discoveries are being incorporated into our existing molecular risk stratification as well as the exploration of new therapeutics directed to these molecular targets.