Improved nonreductive O-glycan release by hydrazinolysis with ethylenediaminetetraacetic acid addition

Anal Biochem. 2014 May 15:453:29-37. doi: 10.1016/j.ab.2014.02.030. Epub 2014 Mar 5.

Abstract

The study of protein O-glycosylation is receiving increasing attention in biological, medical, and biopharmaceutical research. Improved techniques are required to allow reproducible and quantitative analysis of O-glycans. An established approach for O-glycan analysis relies on their chemical release in high yield by hydrazinolysis, followed by fluorescent labeling at the reducing terminus and high-performance liquid chromatography (HPLC) profiling. However, an unwanted degradation known as "peeling" often compromises hydrazinolysis for O-glycan analysis. Here we addressed this problem using low-molarity solutions of ethylenediaminetetraacetic acid (EDTA) in hydrazine for O-glycan release. O-linked glycans from a range of different glycoproteins were analyzed, including bovine fetuin, bovine submaxillary gland mucin, and serum immunoglobulin A (IgA). The data for the O-glycans released by hydrazine with anhydrous EDTA or disodium salt dihydrate EDTA show high yields of the native O-glycans compared with the peeled product, resulting in a markedly increased robustness of the O-glycan profiling method. The presented method for O-glycan release demonstrates significant reduction in peeling and reduces the number of sample handling steps prior to release.

Keywords: Glycan release; HILIC–HPLC; LC–ion trap–MS/MS; O-linked glycans; Peeling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatography, High Pressure Liquid
  • Edetic Acid / chemistry*
  • Hydrazines / chemistry*
  • Polysaccharides / chemistry*

Substances

  • Hydrazines
  • Polysaccharides
  • Edetic Acid