CHF5074 is a non-steroidal anti-inflammatory derivative holding disease-modifying potential for the treatment of Alzheimer's disease. The aim of the present study was to characterize the electrophysiological and metabolic profile of CHF5074 in the hippocampus. Electrophysiological recordings show that CHF5074 inhibits in a dose-dependent manner the current-evoked repetitive firing discharge in CA1 pyramidal neurons. This result is paralleled by a dose-dependent reduction of field excitatory post-synaptic potentials with no effect on the paired-pulse ratio. The effects of CHF5074 were not mediated by AMPA or NMDA receptors, since the inward currents induced by local applications of AMPA and NMDA remained constant in the presence of this compound. We also suggest a possible activity of CHF5074 on ASIC1a receptor since ASIC1a-mediated current, evoked by application of a pH 5.5 solution, is reduced by pretreatment with this compound. Moreover, we demonstrate that CHF5074 treatment is able to counteract in hippocampal slices the OGD-induced increase in alanine, lactate and acetate levels. Finally, CHF5074 significantly reduced the apoptosis in hippocampal neurons exposed to OGD, as revealed by cleaved-caspase-3 immunoreactivity and TUNEL staining. Overall, the present work identifies novel mechanisms for CHF5074 in reducing metabolic acidosis, rendering this compound potentially useful also in conditions of brain ischemia.
Keywords: ASICs; CHF5074; Electrophysiology; Hippocampus; Neuroprotection.
Copyright © 2014 Elsevier Ltd. All rights reserved.