Extracellular proteins are vital for cell activities, such as cell migration. Calumenin is highly conserved among eukaryotes, but its functions are largely unclear. Here, we identify extracellular calumenin as a suppressor of cell migration and tumor metastasis. Calumenin binds to and stabilizes fibulin-1, leading to inactivation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling. We further identify the minimal functional domain of calumenin (amino acids 74-138 and 214-280). Depletion of calumenin induces fibulin-1- and phospho-ERK1/2 (pERK1/2)-dependent promotion of cell migration. Consistently, in hepatocellular and pancreatic carcinoma, both calumenin and fibulin-1 are downregulated. Furthermore, we show that matrix metalloproteinase-13 (MMP-13) proteolyzes fibulin-1 and that calumenin protects fibulin-1 from cleavage by MMP-13. Calumenin, together with fibulin-1, also interacts with fibronectin and depends on both syndecan-4 and α5β1-integrin to suppress ERK1/2 signaling and inhibit cell migration. Thus, extracellular calumenin regulates fibulin-1 to have crucial roles in ERK1/2 signaling and cell migration.