Objective: We tested the hypothesis in sense of a proof of principle that white matter (WM) degeneration after cardiopulmonary arrest (CPA) can be assessed much earlier by diffusion tensor imaging (DTI) than by conventional MRI.
Methods: We performed DTI and T2-weighted FLAIR imaging over four serial acquisitions of a 76-year-old man with unresponsive wakefulness syndrome at day 41, 75, 173 and 284 after CPA. DTI was also performed in ten healthy control subjects. Fractional anisotropy (FA) derived from DTI was assessed in eleven regions of interest within the cerebral white matter (WM) and compared with post-mortem neuropathological findings.
Results: In contrast to conventional FLAIR images that revealed only circumscribed WM damage, the first DTI demonstrated significant reduction of FA across the whole WM. The following FLAIR images (MRI 2-4) revealed increasing atrophy and leukoaraiosis paralleled by clinical deterioration with reduction of wakefulness and intractable seizures. Neuropathological findings confirmed the widespread and marked brain injury following CPA.
Conclusion: DTI may help to evaluate microstructural brain damage following CPA and may have predictive value for further evolution of cerebral degeneration in the chronic phase after CPA.