Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets

Am J Pathol. 2014 May;184(5):1309-22. doi: 10.1016/j.ajpath.2014.01.035. Epub 2014 Mar 15.

Abstract

Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 μg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging / pathology*
  • Animals
  • Atrophy
  • Bacteria / growth & development
  • Cystic Fibrosis / microbiology
  • Cystic Fibrosis / pathology
  • Cystic Fibrosis Transmembrane Conductance Regulator / deficiency*
  • Cystic Fibrosis Transmembrane Conductance Regulator / metabolism
  • Ferrets
  • Gastrointestinal Tract / abnormalities
  • Gastrointestinal Tract / pathology*
  • Gene Knockout Techniques*
  • Humans
  • Mucus / metabolism
  • Organ Specificity

Substances

  • Cystic Fibrosis Transmembrane Conductance Regulator