It has been confirmed that detection of high-risk human papillomavirus (HR HPV) DNA is useful in cervical cancer (CC) screening. Recently, a new real-time fluorescent polymerase chain reaction (PCR) assay was developed to detect HR HPV. This assay can synchronize nucleic acid amplification and testing using specific primers for 13 types of HR HPV genomes, combined with specific TaqMan fluorescent marker probe techniques through the fluorescence automatic PCR instrument. Furthermore, it uses TaqGold™ DNA polymerase, which minimizes the amount of non-specific amplification and increases the sensitivity of the assay. The aim of this study was to evaluate the analytical and clinical performance of the real-time fluorescent PCR assay in CC screening, compared to the Qiagen Hybrid Capture® II High-Risk HPV DNA test® (HC II). In total, 1,252 cervical specimens were collected from women between 19 and 71 years of age. The specimens were examined with three different assays, real-time fluorescent PCR assay and HC II for HR HPV detection combined with liquid-based cytology. Women with cytological abnormalities or HR HPV-positive results underwent colposcopy and cervical biopsy. This study demonstrated good overall agreement between HC II and real-time fluorescent PCR assay (overall agreement, 92.25%; Cohen's κ=0.814). For the detection of high-grade cervical intraepithelial neoplasias (CIN) and CC, the sensitivity of HC II and real-time fluorescent PCR was 94.48 and 92.82%, respectively, and the negative predictive value was 98.85 and 98.54%, respectively. High HR HPV infection rate of the high-grade CIN and CC group was detected (P<0.05). In conclusion, real-time fluorescent PCR assay provides similar results compared to the HC II test for HR HPV detection and could be used in CC screening in clinic.
Keywords: cervical cancer; human papillomavirus; hybrid capture II; real-time fluorescent polymerase chain reaction.