Portal hypertension has traditionally been viewed as a progressive process, involving ultrastructural changes including fibrosis, nodule formation, and vascular thrombosis, leading to increased intrahepatic resistance to flow. However, it is increasingly recognized that a significant component of this vascular resistance results from a dynamic process, regulated by complex interactions between the injured hepatocyte, the sinusoidal endothelial cell, the Kupffer cell and the hepatic stellate cell, which impact on sinusoidal calibre. Recent findings suggest these haemodynamic findings are most marked in patients with superimposed inflammation. The precise mechanisms for vascular dysfunction in cirrhosis with superimposed inflammation remain to be fully elucidated but several studies over the past decade have started to generate the hypothesis that inflammation may be a key mediator of the pathogenesis and severity of portal hypertension in this context. This review provides a comprehensive overview of the biological mechanisms for inflammation playing a key role in the severity of portal hypertension, and illustrates potential novel therapies that act by modifying these processes.
Keywords: Cirrhosis; Inflammation; Liver failure; Portal hypertension; Variceal bleeding.
Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.