Early warning signals of ecological transitions: methods for spatial patterns

PLoS One. 2014 Mar 21;9(3):e92097. doi: 10.1371/journal.pone.0092097. eCollection 2014.

Abstract

A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ecology / methods*
  • Ecosystem*
  • Fourier Analysis
  • Models, Biological
  • Models, Theoretical
  • Time Factors

Grants and funding

The authors are grateful to the Santa Fe Institute and the Arizona State University for the financial support. SK acknowledges support from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 283068 (CASCADE). VG acknowledges support from a Ramalingaswami Fellowship, Department of Biotechnology, Government of India, and the Ministry of Environment and Forests, Government of India. SRC's work is supported by NSF. AME is supported by NSF award 11-44056. VNL is supported by NERC (NE/F005474/1) postdoctoral fellowship of the AXA Research Fund and grant of the National Measurement Office (2013–2016). VD acknowledges a RUBICON (NWO funded) grant and an EU Marie Curie fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.