Volume Bragg gratings serve an important role in laser development as devices that are able to manipulate both the wavelength and angular spectrum of light. A common method for producing gratings is holographic recording of a two collimated beam interference pattern in a photosensitive material. This process requires stability of the recording system at a level of a fraction of the recording wavelength. A new method for measuring and stabilizing the phase of the recording beams is presented that is extremely flexible and simple to integrate into an existing holographic recording setup and independent of the type of recording media. It is shown that the presented method increases visibility of an interference pattern and for photo-thermo-refractive glass enables enhancement of the spatial refractive index modulation. The use of this technique allows for longer recording times that can lead to the use of expanded recording beams for large aperture gratings.