Intermittent scanning for continuous-wave quantum cascade lasers is proposed along with a custom-built laser driver optimized for such operation. This approach lowers the overall heat dissipation of the laser by dropping its drive current to zero between individual scans and holding a longer pause between scans. This allows packaging cw-QCLs in TO–3 housings with built-in collimating optics, thus reducing cost and footprint of the device. The fully integrated, largely analog, yet flexible laser driver eliminates the need for any external electronics for current modulation, lowers the demands on power supply performance, and allows shaping of the tuning current in a wide range. Optimized ramp shape selection leads to large and nearly linear frequency tuning (>1.5 cm−1). Experimental characterization of the proposed scheme with a QCL emitting at 7.7 μm gave a frequency stability of 3.2×10−5 cm−1 for the laser emission, while a temperature dependence of 2.3×10−4 cm−1/K was observed when the driver electronics was exposed to sudden temperature changes. We show that these characteristics make the driver suitable for high precision trace gas measurements by analyzing methane absorption lines in the respective spectral region.