Despite undisputed success of tyrosine kinase inhibitors in the therapy of chronic myeloid leukemia (CML), development of drug resistance and inability to cure the disease challenge clinicians and researchers. Additionally, recent reports regarding cardiovascular toxicities of second and third generation tyrosine kinase inhibitors prove that there is still a place for novel therapeutic combinations in CML. We have previously shown that statins are able to modulate activity of chemotherapeutics or antibodies used in oncology. Therefore, we decided to verify that statins are able to potentiate antileukemic activity of imatinib, still a frontline treatment of CML. Lovastatin, a cholesterol lowering drug, synergistically potentiates antileukemic activity of imatinib in cell lines and in primary CD34+ CML cells from patients in different phases of the disease, including patients resistant to imatinib with no detectable mutations. This effect is related to increased intracellular concentration of imatinib in CD34+ CML cells and cell lines measured using uptake of (14)C-labeled imatinib. Lovastatin does not influence influx but significantly inhibits efflux of imatinib mediated by ATP-binding cassette (ABC) transporters: ABCB1 and ABCG2. The addition of cholesterol completely reverses these effects. Statins do not affect expression of ABCB1 and ABCG2 genes. The effects are drug-class specific, as observed with other statins. Our results suggest that statins may offer a valuable addition to imatinib in a select group of CML patients.
Copyright © 2014 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.