Significance: During wound healing of the skin, keratinocytes should move over while still adhering to their underlying matrix. Thus, mechanistic insights into the wound-healing process require an understanding of the forms and functions of keratinocyte matrix adhesions, specifically focal contacts and hemidesmosomes, and their components. Recent Advances: Although the structure and composition of focal contacts and hemidesmosomes are relatively well defined, the functions of their components are only now being delineated using mouse genetic models and knockdown approaches in cell culture systems. Remarkably, both focal contact and hemidesmosomal proteins appear involved in determining the speed and directional migration of epidermal cells by modulating several signal transduction pathways. Critical Issues: Although many publications are centered on focal contacts, their existence in tissues such as the skin is controversial. Nonetheless, focal contact proteins are central to mechanisms that regulate skin cell motility. Conversely, hemidesmosomes have been identified in intact skin but whether hemidesmosomal components play a positive regulatory function in keratinocyte motility remains debated in the field. Future Directions: Defective wound healing is a developing problem in the aged, hospitalized and diabetic populations. Hence, deriving new insights into the molecular roles of matrix adhesion proteins in wound healing is a prerequisite to the development of novel therapeutics to enhance tissue repair and regeneration.