The effects of novel and newly approved antipsychotics on serum prolactin levels: a comprehensive review

CNS Drugs. 2014 May;28(5):421-53. doi: 10.1007/s40263-014-0157-3.

Abstract

Since the 1970s, clinicians have increasingly become more familiar with hyperprolactinemia (HPRL) as a common adverse effect of antipsychotic medication, which remains the cornerstone of pharmacological treatment for patients with schizophrenia. Although treatment with second-generation antipsychotics (SGAs) as a group is, compared with use of the first-generation antipsychotics, associated with lower prolactin (PRL) plasma levels, the detailed effects on plasma PRL levels for each of these compounds in reports often remain incomplete or inaccurate. Moreover, at this moment, no review has been published about the effect of the newly approved antipsychotics asenapine, iloperidone and lurasidone on PRL levels. The objective of this review is to describe PRL physiology; PRL measurement; diagnosis, causes, consequences and mechanisms of HPRL; incidence figures of (new-onset) HPRL with SGAs and newly approved antipsychotics in adolescent and adult patients; and revisit lingering questions regarding this hormone. A literature search, using the MEDLINE database (1966-December 2013), was conducted to identify relevant publications to report on the state of the art of HPRL and to summarize the available evidence with respect to the propensity of the SGAs and the newly approved antipsychotics to elevate PRL levels. Our review shows that although HPRL usually is defined as a sustained level of PRL above the laboratory upper limit of normal, limit values show some degree of variability in clinical reports, making the interpretation and comparison of data across studies difficult. Moreover, many reports do not provide much or any data detailing the measurement of PRL. Although the highest rates of HPRL are consistently reported in association with amisulpride, risperidone and paliperidone, while aripiprazole and quetiapine have the most favorable profile with respect to this outcome, all SGAs can induce PRL elevations, especially at the beginning of treatment, and have the potential to cause new-onset HPRL. Considering the PRL-elevating propensity of the newly approved antipsychotics, evidence seems to indicate these agents have a PRL profile comparable to that of clozapine (asenapine and iloperidone), ziprasidone and olanzapine (lurasidone). PRL elevations with antipsychotic medication generally are dose dependant. However, antipsychotics having a high potential for PRL elevation (amisulpride, risperidone and paliperidone) can have a profound impact on PRL levels even at relatively low doses, while PRL levels with antipsychotics having a minimal effect on PRL, in most cases, can remain unchanged (quetiapine) or reduce (aripiprazole) over all dosages. Although tolerance and decreases in PRL values after long-term administration of PRL-elevating antipsychotics can occur, the elevations, in most cases, remain above the upper limit of normal. PRL profiles of antipsychotics in children and adolescents seem to be the same as in adults. The hyperprolactinemic effects of antipsychotic medication are mostly correlated with their affinity for dopamine D2 receptors at the level of the anterior pituitary lactotrophs (and probably other neurotransmitter mechanisms) and their blood-brain barrier penetrating capability. Even though antipsychotics are the most common cause of pharmacologically induced HPRL, recent research has shown that HPRL can be pre-existing in a substantial portion of antipsychotic-naïve patients with first-episode psychosis or at-risk mental state.

Publication types

  • Review

MeSH terms

  • Animals
  • Antipsychotic Agents / adverse effects
  • Antipsychotic Agents / pharmacology*
  • Humans
  • Hyperprolactinemia / chemically induced
  • Hyperprolactinemia / diagnosis
  • Hyperprolactinemia / epidemiology
  • Hyperprolactinemia / physiopathology
  • Prolactin / blood*
  • Prolactin / metabolism

Substances

  • Antipsychotic Agents
  • Prolactin