Rheology dynamics of aggregating colloidal suspensions

Soft Matter. 2014 May 7;10(17):2971-81. doi: 10.1039/c3sm53082e.

Abstract

We study a colloidal model based on population balances in the context of complex fluid rheology. Two typical particle microstructure kinetics, orthokinetic, collisions due to shear, and perikinetic, collisions due to Brownian motion, are found to appear at continuum as different flow behaviors - those having monotonic and non-monotonic flow curves, respectively. Solving the colloidal model together with the 1D Stokes equation for laminar, incompressible flow with Couette boundary conditions, allows bridging the gap between the rheological experiments and the microstructural modeling. The analysis of such a model reveals that orthokinetic particle suspensions have a uniquely defined, continuous steady state shear profile, whereas suspensions in which also perikinetic collisions are present, the steady state can be shear banded and non-unique. Thus, the shear banded configurations at a steady state are found to depend on the initial conditions and the collision kinetics of the system. At high shear rates all the studied cases show continuous shear profiles.

Publication types

  • Research Support, Non-U.S. Gov't