Due to shortcomings associated with autogenous bone graft, the gold standard of craniofacial grafting, investigators seek alternatives that are accessible, efficient, and affordable. Accordingly, in the present pilot study, bone regeneration was induced using bone marrow-derived mesenchymal stem cells (BMSCs) loaded onto freeze-dried mineral bone block (FDMBB) in the presence or absence of recombinant platelet-derived growth factor-BB (rh PDGF-BB). Eight weeks after the bilateral extraction of premolars of four mongrel dogs, 25 × 10 mm defects were created at both sides of the mandible. The right mandible received autogenous-BMSC loaded on FDMBB (MSC group), whereas the left mandible received cellular blocks impregnated with rhPDGF-BB (MSC + PDGF Group). Animals were euthanized 8 weeks after grafting. Micro-computed tomography (micro-CT) and histomorphometric analysis demonstrated higher levels of bone formation for the test group (10.34% ± 0.20 and 26.63% ± 3.14, respectively) when compared to the control group (8.20% ± 0.20 and 21.38% ± 5.11). The differences were not statistically significant (P > 0.05). According to the performed micro-CT and histomorphometric analysis, adding 0.5 mg rhPDGF-BB (0.3 mg/mL) to the combination of BMSC/FDMBB did not significantly increase bone formation in supracrestal defect in dog mandible.
Keywords: bone; cell therapy; growth factor; stem cell; tissue engineering.
© 2014 Wiley Periodicals, Inc.