Background: Malignant peritoneal mesothelioma (MPM) is an aggressive cancer with a dismal prognosis. Oncolytic viruses are a promising new therapy for cancer because of their ability to kill tumor cells with minimal toxicity to normal tissues. This experimental study aimed to examine the potential of modified vaccinia virus (VV) to treat MPM when administered alone or as an adjuvant treatment to surgery.
Methods: Two aggressive murine mesothelioma cell lines (AC29, AB12), were used. Cell viability and viral cytopathic effects were assessed using MTS and crystal violet assays. Immunocompetent mice were injected intraperitoneally with MPM cells and treated with intraperitoneal VV. Tumor-bearing mice also underwent cytoreductive surgery (CRS) followed by VV (or control) therapy.
Results: The cytotoxic effects of VV on MPM cell lines was significantly increased compared with the control non-cancer cell line. In both orthotopic models, VV induced tumor regression, prolonging median and long-term survival. VV treatment after incomplete CRS was not superior to VV alone; however, when mice with microscopic disease were treated with VV, further prolongation of median and long-term survivals was observed.
Conclusions: VV selectively kills MPM cells in vitro and leads to improved survival and cures in immunocompetent murine models. Higher efficacy of the virus in the microscopic disease context suggests the use of the virus as an adjuvant treatment to complete surgical resection. These promising results justify further studies of VV in humans as a novel treatment for MPM.