Potential role for CA-SP in nucleating retroviral capsid maturation

J Virol. 2014 Jul;88(13):7170-7. doi: 10.1128/JVI.00309-14. Epub 2014 Apr 9.

Abstract

During virion maturation, the Rous sarcoma virus (RSV) capsid protein is cleaved from the Gag protein as the proteolytic intermediate CA-SP. Further trimming at two C-terminal sites removes the spacer peptide (SP), producing the mature capsid proteins CA and CA-S. Abundant genetic and structural evidence shows that the SP plays a critical role in stabilizing hexameric Gag interactions that form immature particles. Freeing of CA-SP from Gag breaks immature interfaces and initiates the formation of mature capsids. The transient persistence of CA-SP in maturing virions and the identification of second-site mutations in SP that restore infectivity to maturation-defective mutant viruses led us to hypothesize that SP may play an important role in promoting the assembly of mature capsids. This study presents a biophysical and biochemical characterization of CA-SP and its assembly behavior. Our results confirm cryo-electron microscopy (cryo-EM) structures reported previously by Keller et al. (J. Virol. 87:13655-13664, 2013, doi:10.1128/JVI.01408-13) showing that monomeric CA-SP is fully capable of assembling into capsid-like structures identical to those formed by CA. Furthermore, SP confers aggressive assembly kinetics, which is suggestive of higher-affinity CA-SP interactions than observed with either of the mature capsid proteins. This aggressive assembly is largely independent of the SP amino acid sequence, but the formation of well-ordered particles is sensitive to the presence of the N-terminal β-hairpin. Additionally, CA-SP can nucleate the assembly of CA and CA-S. These results suggest a model in which CA-SP, once separated from the Gag lattice, can actively promote the interactions that form mature capsids and provide a nucleation point for mature capsid assembly.

Importance: The spacer peptide is a documented target for antiretroviral therapy. This study examines the biochemical and biophysical properties of CA-SP, an intermediate form of the retrovirus capsid protein. The results demonstrate a previously unrecognized activity of SP in promoting capsid assembly during maturation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Capsid / metabolism*
  • Capsid Proteins / chemistry*
  • Capsid Proteins / genetics
  • Capsid Proteins / metabolism
  • Cryoelectron Microscopy
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Peptide Fragments / chemistry*
  • Peptide Fragments / genetics
  • Peptide Fragments / metabolism
  • Protein Structure, Tertiary
  • Rous sarcoma virus / physiology*
  • Sequence Homology, Amino Acid
  • Virus Assembly*

Substances

  • Capsid Proteins
  • Peptide Fragments