The narrow optical transitions and long spin coherence times of rare earth ions in crystals make them desirable for a number of applications ranging from solid-state spectroscopy and laser physics to quantum information processing. However, investigations of these features have not been possible at the single-ion level. Here we show that the combination of cryogenic high-resolution laser spectroscopy with optical microscopy allows one to spectrally select individual praseodymium ions in yttrium orthosilicate. Furthermore, this spectral selectivity makes it possible to resolve neighbouring ions with a spatial precision of the order of 10 nm. In addition to elaborating on the essential experimental steps for achieving this long-sought goal, we demonstrate state preparation and read out of the three ground-state hyperfine levels, which are known to have lifetimes of the order of hundred seconds.