Spontaneous changes in intermediate filament protein expression patterns in lung cancer cell lines

J Cell Sci. 1988 Sep:91 ( Pt 1):91-108. doi: 10.1242/jcs.91.1.91.

Abstract

The usefulness of cell lines in the study and prediction of the clinical behaviour of lung cancer is still a matter of debate. However, lung tumour cell cultures have been of value in investigations concerning molecular and cell biological aspects of these neoplasms. Especially in the examination of characteristics specific for the main types of differentiation (squamous cell carcinoma, adenocarcinoma, small cell carcinoma), in vitro studies have been most important. Twenty eight lung cancer cell lines were cultured for up to four years, and were examined at regular intervals for their intermediate filament protein (IFP) expression patterns using a panel of cytokeratin (CK) and neurofilament (NF) antibodies. These studies showed that the classic type of small cell lung cancer (SCLC) cell lines contain CKs 8, 18, and occasionally CK 19, while the variant-type SCLC cell lines generally express no CKs but can contain NFs. Non-SCLC cell lines, such as squamous cell carcinoma and adenocarcinoma cell lines, contain CKs 7 (in most cases), 8, 18 and 19. In one variant SCLC cell line and in one adenocarcinoma cell line CKs 4, 10 and 13, characteristic of squamous cell differentiation, were found. Although most cell lines have remained stable with respect to growth characteristics and IFP expression patterns, five lung cancer cultures exhibited a transition from one cell type to another, paralleled by changes in IFP expression. Progressions from classic to variant SCLC cell lines have been observed, next to conversions from variant SCLC to cell lines re-expressing cytokeratins. In some cases this resulted in a coexpression of CKs and NFs within a cell line and even within individual tumour cells. These results strongly support the earlier finding that CK expression in SCLC cell lines is a reliable marker for the classic type of differentiation, while the absence of CKs and the presence of NFs marks the variant type of differentiation. Our results are discussed in view of previous histological findings.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Small Cell / metabolism*
  • Cell Line
  • Humans
  • Immunoblotting
  • Intermediate Filament Proteins / metabolism*
  • Keratins / metabolism
  • Lung Neoplasms / metabolism*
  • Microscopy, Fluorescence
  • Microscopy, Phase-Contrast
  • Tumor Cells, Cultured / metabolism

Substances

  • Intermediate Filament Proteins
  • Keratins