Background and purpose: T lymphocytes have recently been identified as key mediators of tissue damage in ischemic stroke. The interaction between very late antigen-4 (VLA-4) and vascular adhesion molecule-1 is crucial for the transvascular egress of T lymphocytes, and inhibition of this interaction by specific antibodies is a powerful strategy to combat autoimmune neuroinflammation. However, whether pharmacological blocking of T-lymphocyte trafficking is also protective during brain ischemia is still unclear. We investigated the efficacy of a monoclonal antibody directed against VLA-4 in mouse models of ischemic stroke.
Methods: Transient and permanent middle cerebral artery occlusion was induced in male C57Bl/6 mice. Animals treated with a monoclonal anti-CD49d antibody (300 μg) 24 hours before or 3 hours after the onset of cerebral ischemia and stroke outcome, including infarct size, functional status, and mortality, were assessed between day 1 and day 7. The numbers of immune cells invading the ischemic brain were determined by immunocytochemistry and flow cytometry.
Results: Blocking of VLA-4 significantly reduced the invasion of T lymphocytes and neutrophils on day 5 after middle cerebral artery occlusion and inhibited the upregulation of vascular adhesion molecule-1. However, the anti-CD49d antibody failed to influence stroke outcome positively irrespective of the model or the time point investigated.
Conclusions: Pharmacological inhibition of the VLA-4/vascular adhesion molecule-1 axis in experimental stroke was ineffective in our hands. Our results cast doubt on the effectiveness of anti-CD49d as a stroke treatment. Further translational studies should be performed before testing anti-VLA-4 antibodies in patients with stroke.
Keywords: infarction, middle cerebral artery; inflammation; natalizumab; vascular cell adhesion molecule-1; very late antigen-4.
© 2014 American Heart Association, Inc.