Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff's bases incorporating sulfonamide, carboxylate and carboxymethyl moieties

Bioorg Med Chem. 2014 May 15;22(10):2867-74. doi: 10.1016/j.bmc.2014.03.041. Epub 2014 Apr 4.

Abstract

A library of Schiff bases was synthesized by condensation of aromatic amines incorporating sulfonamide, carboxylic acid or carboxymethyl functionalities as Zn(2+)-binding groups, with aromatic aldehydes incorporating tert-butyl, hydroxy and/or methoxy groups. The corresponding amines were thereafter obtained by reduction of the imines. These compounds were assayed for the inhibition of two cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes, hCA I and II. The Ki values of the Schiff bases were in the range of 7.0-21,400nM against hCA II and of 52-8600nM against hCA I, respectively. The corresponding amines showed Ki values in the range of 8.6nM-5.3μM against hCA II, and of 18.7-251nM against hCA I, respectively. Unlike the imines, the reduced Schiff bases are stable to hydrolysis and several low-nanomolar inhibitors were detected, most of them incorporating sulfonamide groups. Some carboxylates also showed interesting CA inhibitory properties. Such hydrosoluble derivatives may show pharmacologic applications.

Keywords: Amine; Carbonic anhydrase; Imine; Inhibitor; Schiff’s base; Sulfonamide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbonic Anhydrase Inhibitors / chemical synthesis
  • Carbonic Anhydrase Inhibitors / chemistry
  • Carbonic Anhydrase Inhibitors / pharmacology*
  • Carbonic Anhydrases / metabolism*
  • Carboxylic Acids / chemistry*
  • Dose-Response Relationship, Drug
  • Humans
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / metabolism
  • Molecular Structure
  • Schiff Bases / chemistry*
  • Structure-Activity Relationship
  • Sulfonamides / chemistry*

Substances

  • Carbonic Anhydrase Inhibitors
  • Carboxylic Acids
  • Isoenzymes
  • Schiff Bases
  • Sulfonamides
  • Carbonic Anhydrases