alpha 2-Macroglobulin-trypsin complex (alpha 2M.T) and alpha 2M-methylamine bind in a Ca2+-dependent way to a 400- to 500-kDa receptor in rat and human liver membranes (Gliemann, J., Davidsen, O., and Moestrup, S. K. (1989) Biochim. Biophys. Acta 980, 326-332). Here we report the preparation of alpha 2M receptors from rat liver membranes solubilized in 3-[(3-cholamidopropyl) dimethylammonio]-1-propane sulfonic acid (CHAPS) dihydrate and incubated with Sepharose-immobilized alpha 2M-methylamine. The receptor preparation eluted with EDTA (pH 6.0) contained a protein larger than the 360-kDa alpha 2M (nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and some minor contaminants. The reduced large protein was about 440 kDa using reduced laminin (heavy chain: 400 kDa) as a standard. About 10 micrograms of receptor protein was obtained from 100 mg of liver membranes. The receptor preparation immobilized on nitrocellulose sheets bound 125I-alpha 2M.T, and the binding activity co-eluted with the 440-kDa protein. 125I-Labeled rat alpha 1-inhibitor-3 (alpha 1I3), a 200-kDa analogue of the alpha 2M subunit which binds to the alpha 2M receptors, was cross-linked to the 440-kDa protein. The receptor preparation was iodinated, and the 125I-labeled 440-kDa protein was isolated. It showed Ca2+-dependent saturable binding to alpha 2M-methylamine. In conclusion, we have purified the major hepatic alpha 2M receptor as an approximately 440-kDa single chain protein.