It has recently been proposed that hypocapnic cerebrovascular reactivity (CVR) can be assessed by measuring the blood oxygenation level dependent (BOLD) response to paced deep breathing (PDB) tasks inducing mild hypocapnia and vasoconstriction. In this work, we aim to assess the test-retest reproducibility and inter-subject variability of BOLD CVR measurements obtained using a PDB task and different methods to analyse the associated BOLD signal. The respiratory protocol consisted of alternating 40s of PDB with normal free breathing; expired CO2 pressure levels (PETCO2) were continuously monitored. CVR was quantified using either a timecourse curve analysis (TCA) approach, where the magnitude of response peaks is emphasized, or general linear modelling (GLM) including optimisation of the BOLD response latencies. The GLM fit was carried out using two types of response regressors: one that was computed as the convolution of PETCO2 traces with a gamma function and another that consisted of the convolution of PDB paradigm blocks with a physiological model of the respiratory response. Haemodynamic response latencies were optimised either on a voxel basis or for the whole imaging region. We found that the GLM method based on PDB task or PETCO2 traces and voxelwise optimisation of response latencies provided the most reproducible measures of CVR. For the average grey matter CVR, the inter-subject coefficient of variation (CVinter) / intra-subject coefficient of variation (CVintra) / intra-class correlation coefficient (ICC) were 20%/8%/0.8 and 27%/8%/0.9, using the task and PETCO2 timecourses, respectively. In terms of the spatial reproducibility, the group mean (±standard deviation) of the spatial ICC (ICCspatial) was 1.04±0.23 and 1.02±0.26, for the task and PETCO2 timecourses, respectively. These results indicate generally good reproducibility of the hypocapnic CVR maps obtained using the proposed PDB task and analysis methodology. This suggests that such protocol may therefore offer a promising alternative to conventional vasoactive challenges, which avoids their discomfort and difficulty.
Keywords: Cerebrovascular reactivity; Hypocapnia; Paced deep breathing; Reproducibility; fMRI.
Copyright © 2014 Elsevier Inc. All rights reserved.