This study investigates the in vivo therapeutic capabilities of transcostal histotripsy without using aberration correction mechanisms and its thermal impact on overlying tissues. Non-invasive liver treatments were conducted in eight pigs, with four lesions generated through transcostal windows with full ribcage obstruction and four lesions created through transabdominal windows without rib coverage. Treatments were performed by a 750 kHz focused transducer using 5 cycle pulses at 200 Hz PRF, with estimated in situ peak negative pressures of 13-17 MPa. Temperatures on overlying tissues including the ribs were measured with needle thermocouples inserted superficially beneath the skin. Treatments of approximately 40 min were applied, allowing overlying tissue temperatures to reach saturation. Lesions yielded statistically comparable ablation volumes of 3.6 ± 1.7 cm(3) and 4.5 ± 2.0 cm(3) in transcostal and transabdominal treatments, respectively. The average temperature increase observed in transcostal treatments was 3.9 ± 2.1 °C, while transabdominal treatments showed an increase of 1.7 ± 1.3 °C. No damage was seen on the ribcage or other overlying tissues. These results indicate that histotripsy can achieve effective treatment through the ribcage in vivo without requiring correction mechanisms, while inducing no substantial thermal effects or damage to overlying tissues. Such capabilities could benefit several non-invasive therapy applications involving transcostal treatment windows.