Network epidemiology and plant trade networks

AoB Plants. 2014 Apr 29;6(0):plu007. doi: 10.1093/aobpla/plu007. Print 2014.

Abstract

Models of epidemics in complex networks are improving our predictive understanding of infectious disease outbreaks. Nonetheless, applying network theory to plant pathology is still a challenge. This overview summarizes some key developments in network epidemiology that are likely to facilitate its application in the study and management of plant diseases. Recent surveys have provided much-needed datasets on contact patterns and human mobility in social networks, but plant trade networks are still understudied. Human (and plant) mobility levels across the planet are unprecedented-there is thus much potential in the use of network theory by plant health authorities and researchers. Given the directed and hierarchical nature of plant trade networks, there is a need for plant epidemiologists to further develop models based on undirected and homogeneous networks. More realistic plant health scenarios would also be obtained by developing epidemic models in dynamic, rather than static, networks. For plant diseases spread by the horticultural and ornamental trade, there is the challenge of developing spatio-temporal epidemic simulations integrating network data. The use of network theory in plant epidemiology is a promising avenue and could contribute to anticipating and preventing plant health emergencies such as European ash dieback.

Keywords: Complex networks; Hymenoscyphus pseudoalbidus; Phytophthora ramorum; epidemic threshold; global change; infectious diseases; information diffusion; network structure; scale-free; small-world..