Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related mortality worldwide. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed and associated with the prognosis of HCC. However, the functions of Gal-3 in HCC cells are not fully understood. To address the function of Gal-3 in HCC cells, we used small interfering RNA (siRNA) to knock down Gal-3 expression in HepG2, an HCC cell line. We found that in vitro the silencing of Gal-3 decreased the proliferative activity, colony formation ability, migratory and invasive potential of HepG2 cells. The silencing of Gal-3 significantly decreased the mRNA and protein levels of urokinase-type plasminogen activator receptor (uPAR) as well as uPAR's downstream signaling transduction pathway, including phosphorylation of AKT. Furthermore, the downregulation of Gal-3 by siRNA resulted in significantly decreased activity of the MEK/ERK signaling pathway, and the treatment of HepG2 cells with MEK/ERK inhibitor U0126 significantly reduced the mRNA and protein levels of uPAR. Taken together, our results suggest that Gal-3 modulates uPAR expression via the MEK/ERK pathway, and that Gal-3 may be a potential therapeutic target for the treatment of HCC.