Project: Both septic shock and sodium selenite (Na2SeO3) lead to multiple organ failure through oxidation. Na2SeO3 has direct oxidant effects above the nutritional level and indirect anti-oxidant properties. In a lipopolysaccharide (LPS) rat model we assessed margin of safety, toxicity and beneficial effect of pentahydrate Na2SeO3 (5H2O·Na2SeO3) at oxidant doses.
Procedure: In a three-step study on 204 rats we: (i) observed toxic effects of Na2SeO3 injected intraperitoneously (IP) and determined its Minimum Dose Without Toxic effect (MDWT) 0.25-0.35 mg/kg selenium (Se) content; (ii) injected IP LPS at 70% lethal dose (LD) followed, or not, one hour later by IP Na2SeO3 at MDWT and (iii) by doses>MDWT. At 48 h, in survivors, we measured plasma creatinine, lactate, aspartate and alanine aminotransferase (AST, ALT), nitric oxide (NO) and Se concentrations.
Results: (i) Na2SeO3 alone did not increase NO and lactate. Encephalopathy appeared at 1mg Se/kg. Creatinine increased at 1-1.75 mg Se/kg, AST, ALT at 3-4.5 mg Se/kg, and the minimum LD was 3 mg Se/kg. (ii) Mortality after LPS was 37/50 (74%, [62-86%]) vs. 20/30 (67%, [50-84%]) when followed by Na2SeO3 at MDWT (p=0.483) with a decreased in NO (-31%, p=0.038) a trend for lactate decrease (-19%, p=0.068) and an increased Se in plasma of survivals. (iii) All rats died at doses ≥0.6 mg/kg (p<0.001).
Conclusion: Mechanisms of LPS and Na2SeO3 toxicity differ (i.e. NO, lactate). In septic shock 5H2O·Na2SeO3 toxicity increased, margin of safety decrease, but IP administration of dose considered as oxidant of 5H2O·Na2SeO3 showed beneficial effects.
Keywords: Drug; Multiple organ failure; Oxidation; Selenium; Septic shock.
Copyright © 2014. Published by Elsevier GmbH.