Mitochondrial toxicity is a major concern related to nucleoside reverse transcriptase inhibitors. Common manifestations are peripheral neuropathy and lipodystrophy. Depletion of mitochondria has been associated with mitochondrial dysfunction. We investigated whether mitochondria DNA (mtDNA) levels in peripheral blood can be used as biomarker of stavudine-associated mitochondrial toxicities. We enrolled 203 HIV-infected Malawian adult patients on stavudine-containing ART and 64 healthy controls of Bantu origin in a cross-sectional study. Total DNA was extracted from whole blood.The glyceraldehyde-3-phosphate dehydrogenase gene was used to estimate nuclear DNA (nDNA) levels and the ATP synthase-8 mitochondrial DNA gene to estimate mtDNA levels, from which mtDNA/nDNA ratios were determined. MtDNA subhaplogroups were established by sequencing. Among patients, peripheral neuropathy was present in 21% (43/203), lipodystrophy in 18% (20/112), elevated lactate level (>2.5 mmol/L) in 17% (19/113). Healthy controls had a higher median mtDNA/nDNA ratio when compared to HIV/AIDS patients (6.64 vs. 5.08; p=0.05), patients presenting with peripheral neuropathy (6.64 vs. 3.40, p=0.039), and patients with high lactate levels (6.64 vs. 0.68, p=0.024), respectively. Significant differences in median mtDNA/nDNA ratios were observed between patients with high and normal lactate levels (5.88 vs. 0.68, p=0.018). The median mtDNA/nDNA ratio of patients in subhaplogroup L0a2 was much lower (0.62 vs. 8.50, p=0.01) than that of those in subhaplogroup L2a. Our data indicate that peripheral blood mtDNA/nDNA ratio is a marker of mitochondrial toxicities of stavudine and is associated with elevated lactate levels and mtDNA subhaplogroups. This could open the prospect to select a substantial group of patients who will not have problematic side effects from stavudine, an affordable and effective antiretroviral drug that is being phased out in Africa due to its toxicity.