Parallel imaging and compressed sensing combined framework for accelerating high-resolution diffusion tensor imaging using inter-image correlation

Magn Reson Med. 2015 May;73(5):1775-85. doi: 10.1002/mrm.25290. Epub 2014 May 13.

Abstract

Purpose: Increasing acquisition efficiency is always a challenge in high-resolution diffusion tensor imaging (DTI), which has low signal-to-noise ratio and is sensitive to reconstruction artifacts. In this study, a parallel imaging (PI) and compressed sensing (CS) combined framework is proposed, which features motion error correction, PI calibration, and sparsity model using inter-image correlation tailored for high-resolution DTI.

Theory and methods: The proposed method, named anisotropic sparsity SPIRiT, consists of three steps: (i) motion-induced phase error estimation, (ii) initial CS reconstruction and PI kernel calibration, and (iii) final reconstruction combining PI and CS. Inter-image correlation of diffusion-weighted images are used through anisotropic signals for improved sparsity. A specific implementation based on multishot variable density spiral DTI is used to demonstrate the method.

Results: The proposed reconstruction method was compared with CG-SENSE, CS-based joint reconstruction, and PI and CS combined methods with L1 and joint sparsity regularization, in brain DTI experiments at acceleration factors of 3 to 5. Both qualitative and quantitative results demonstrated that the proposed method resulted in better preserved image quality and more accurate DTI parameters than other methods.

Conclusion: The proposed method can accelerate high-resolution DTI acquisition effectively by using the sharable information among different diffusion encoding directions.

Keywords: anisotropic sparsity; compressed sensing; diffusion tensor imaging; parallel imaging; variable density spiral.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / pathology*
  • Diffusion Magnetic Resonance Imaging / methods*
  • Humans
  • Image Enhancement / methods*
  • Image Processing, Computer-Assisted / methods*
  • Statistics as Topic