Sea beets grown from seeds collected in 1989 and 2009 along the coasts of France and adjacent regions were compared for flowering date under controlled conditions. Seeds from both collection years were sown simultaneously and cultivated under the same glasshouse conditions. Date of flowering onset and year of first flowering were recorded. There was an overall northward shift in flowering time of about 0.35° latitude (i.e. 39 km) over the 20-year period. The southern portion of the latitudinal gradient--that is, from 44.7°N to 47.28°N--flowered significantly later by a mean of 1.78 days, equivalent to a 43.2-km northward shift of phenotypes. In the northern latitudes between 48.6°N and 52°N, flowering date was significantly earlier by a mean of 4.04 days, corresponding to a mean northward shift of 104.9 km, and this shift was apparently due to a diminished requirement of exposure to cold temperatures (i.e. vernalization), for which we found direct and indirect evidence. As all plants were grown from seed under identical conditions, we conclude that genetic changes occurred in the sensitivity to environmental cues that mediate the onset of flowering in both the northern and the southern latitudes of the gradient. Microevolution and gene flow may have contributed to this change. There was no significant change in the frequency of plants that flowered without vernalization. The lack of vernalization requirement may be associated with environmental instability rather than with climate conditions.
Keywords: Beta vulgaris ssp. maritima (L.); climate change; common-garden experiment; flowering induction; latitudinal gradient; vernalization requirement.
© 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.