The vibrational relaxation of the amide I mode of deuterated N-methylacetamide in D2O solution is studied through nonequilibrium simulations using the semiempirical Born-Oppenheimer molecular dynamics (SEBOMD) approach to describe the whole solute-solvent system. Relaxation pathways and lifetimes are determined using the instantaneous normal mode (INM) analysis. The relaxation of the amide I mode is characterized by three different time scales; most of the excess energy (80%) is redistributed through intramolecular vibrational energy redistribution processes, with a smaller contribution (20%) of intermolecular energy flowing into the solvent. The amide II mode is found to contribute modestly (7%) to the relaxation mechanism. The amide I mode and the total vibrational energy decay curves obtained using SEBOMD and INM are in satisfactory agreement with the experimental measurements.