Although various proteins and some electrolytes have been measured in human saliva, little systematic data about the major and minor elemental components of this body fluid have been obtained. In order to obtain such data, concentrations of C, Na, P, Cl, K, Ca, Sc, Cr, Fe, Co, Zn, Se, Br, Rb, Sb, I, and Cs in human parotid saliva were measured by instrumental nuclear methods. The data obtained confirmed the relative lack of Zn in saliva of patients with hypogeusia (decreased taste acuity) and suggested that concentrations of Na, Cl, Br, and Ca followed the order: normals greater than hypogeusia greater than hyposmia (decreased smell acuity). To compare concentrations of elements in saliva with those in blood and urine, absolute concentrations were normalized to that of Na through the use of a concept called an enrichment factor. On this basis, parotid saliva is relatively depleted in Se, Zn, and Fe and enriched for most other elements relative to blood plasma indicating that the fluid is not simply a transudate of blood plasma. Using this same technique, saliva composition was found more similar to urine than blood plasma, being relatively depleted in Se, Cs, and Co, being enriched in I, Br, and Cr and having about the same relative concentrations of P, Cl, Zn, Fe, Ca, K, and Rb. As the total body concentrations of many of the enriched elements in saliva are extremely small, their enrichment in saliva suggests special roles for these elements in the oral cavity. Because of its accessibility, ease of collection, and interaction with some body constituents, saliva represents a useful, albeit neglected, tool in the diagnosis of some physiological and pathological changes in body function and in understanding important aspects of trace metal metabolism.