Mixed-forest species establishment in a monodominant forest in central Africa: implications for tropical forest invasibility

PLoS One. 2014 May 20;9(5):e97585. doi: 10.1371/journal.pone.0097585. eCollection 2014.

Abstract

Background: Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest.

Methodology/principal findings: We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement-revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement.

Conclusions/significance: Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity*
  • Cameroon
  • Fabaceae / physiology*
  • Forests*
  • Introduced Species

Grants and funding

KSHP was supported by the European Union Marie Curie EST Fellowship, AXA Fellowship and Southampton University’s IFLS Fellowship. SLL was supported by a Royal Society University Research Fellowship, T-Forces project funded by the European Research Council, the EU program GEOCARBON, and a Phillip Leverhulme Prize. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.