Colletotrichum orbiculare Secretes Virulence Effectors to a Biotrophic Interface at the Primary Hyphal Neck via Exocytosis Coupled with SEC22-Mediated Traffic

Plant Cell. 2014 May;26(5):2265-2281. doi: 10.1105/tpc.113.120600. Epub 2014 May 21.

Abstract

The hemibiotrophic pathogen Colletotrichum orbiculare develops biotrophic hyphae inside cucumber (Cucumis sativus) cells via appressorial penetration; later, the pathogen switches to necrotrophy. C. orbiculare also expresses specific effectors at different stages. Here, we found that virulence-related effectors of C. orbiculare accumulate in a pathogen-host biotrophic interface. Fluorescence-tagged effectors accumulated in a ring-like region around the neck of the biotrophic primary hyphae. Fluorescence imaging of cellular components and transmission electron microscopy showed that the ring-like signals of the effectors localized at the pathogen-plant interface. Effector accumulation at the interface required induction of its expression during the early biotrophic phase, suggesting that transcriptional regulation may link to effector localization. We also investigated the route of effector secretion to the interface. An exocytosis-related component, the Rab GTPase SEC4, localized to the necks of biotrophic primary hyphae adjacent to the interface, thereby suggesting focal effector secretion. Disruption of SEC4 in C. orbiculare reduced virulence and impaired effector delivery to the ring signal interface. Disruption of the v-SNARE SEC22 also reduced effector delivery. These findings suggest that biotrophy-expressed effectors are secreted, via the endoplasmic reticulum-to-Golgi route and subsequent exocytosis, toward the interface generated between C. orbiculare and the host cell.