We introduce a versatile ABC triblock terpoly- mer platform based on poly(ethylene oxide)-block-poly(allyl glycidyl ether)-block-poly(tert-butyl glycidyl ether) (PEO-b-PAGE-b-PtBGE) and subsequent functionalization of the PAGE segment with thiogalactose (hydroxyl), cysteamine (amino), and 2-mercaptopropionic acid (carboxy) by thiol-ene chemistry. These materials are used to prepare core-shell-corona micelles with a PtBGE core, a PAGE shell, and a PEO corona and sizes below 30 nm in aqueous media. We investigate the influence of different functional groups on micelle formation and cellular uptake. Moreover, co-assembly of differently functionalized materials allows to create micelles with a mixed shell and adjustable charge and, in that way, important characteristics such as cell uptake or cytotoxicity can be controlled. Furthermore, we demonstrate that even the uptake mechanism depends on the substitution pattern of the underlying triblock terpolymer.