13C NMR analysis of 3,6-dihydro-2H-pyrans: assignment of remote stereochemistry using axial shielding effects

J Org Chem. 2014 Jun 20;79(12):5521-32. doi: 10.1021/jo500678k. Epub 2014 Jun 10.

Abstract

The rational analysis of (13)C NMR axial shielding effects has enabled the assignment of remote relative stereochemistry in 3,6-oxygen-substituted 3,6-dihydro-2H-pyrans. Comparison of the (13)C NMR shifts of equivalent centers in cis- and trans-substituted 3,6-dihydro-2H-pyrans allows the relative configuration at the C3 and C6 positions to be defined in diastereoisomeric mixtures. Density functional calculations were used to validate this method and assess the conformational bias present in the ring system. Ultimately, the coupling of computational chemistry with this (13)C NMR-based method provided a reliable and convenient method for stereochemical assignment of a single diastereomer. This approach provides a facile and complementary alternative to the practices previously employed for determining the relative configuration in 3,6-dihydro-2H-pyrans.