For over half a century, actinomycetes have served as the most promising source of novel antibacterial scaffolds. However, over the years, there has been a decline in the discovery of new antibiotics from actinomycetes. This is partly due to the use of standard screening methods and platforms that result in the re-discovery of the same molecules. Thus, according to current estimates, the discovery of a new antibacterial requires screening of tens to hundreds of thousands of bacterial strains. We have devised a resistance-based antibacterial discovery platform by harnessing the innate self-protection mechanism of antibiotic producers. This protocol provides a detailed method for isolation of scaffold-specific antibacterial producers by isolating strains in the presence of a selective antibiotic. As a specific example, we describe isolation of glycopeptide antibiotic (GPA) producers from soil actinomycetes, using vancomycin as the antibiotic resistance filter. However, the protocol can be adapted to isolate diverse producers from various sources producing different scaffolds, by selecting an appropriate antibiotic as a screening filter. The protocol provides a solution for two major bottlenecks that impede the new drug discovery pipeline: low hit frequency and re-discovery of known molecules. The entire protocol, from soil collection to identification of putative antibacterial producers, takes about 6 weeks to complete.