Objectives: The objectives of this study were to: estimate the prevalence of extended-spectrum β-lactamase (ESBL)- and AmpC β-lactamase-producing Escherichia coli carriage among broiler farmers, their family members and employees; identify and quantify risk factors for carriage, with an emphasis on contact with live broilers; and compare isolates from humans and broilers within farms with respect to molecular characteristics to gain insight into transmission routes.
Methods: A cross-sectional prevalence study was conducted on 50 randomly selected Dutch broiler farms. Cloacal swabs were taken from 20 randomly chosen broilers. Faecal swabs were returned by 141 individuals living and/or working on 47 farms. ESBL/AmpC-producing E. coli were isolated and, for selected isolates, phylogenetic groups, plasmids and sequence types were determined. Questionnaires were used for risk factor analysis.
Results: All sampled farms were positive, with 96.4% positive pooled broiler samples. The human prevalence was 19.1%, with 14.3% and 27.1% among individuals having a low and a high degree of contact with live broilers, respectively. Five pairs of human-broiler isolates had identical genes, plasmid families and E. coli sequence types, showing clonal transmission. Furthermore, similar ESBL/AmpC genes on the same plasmid families in different E. coli sequence types in humans and broilers hinted at horizontal gene transfer.
Conclusions: The prevalence among people on broiler farms was higher than in previous studies involving patients and the general population. Furthermore, an increased risk of carriage was shown among individuals having a high degree of contact with live broilers. The (relative) contribution of transmission routes that might play a role in the dissemination of ESBL/AmpC-encoding resistance genes to humans on broiler farms should be pursued in future studies.
Keywords: ESBLs; MLST; carriage; phylogenetic groups; plasmids.
© The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: [email protected].