Distributed SLAM using improved particle filter for mobile robot localization

ScientificWorldJournal. 2014:2014:239531. doi: 10.1155/2014/239531. Epub 2014 Apr 27.

Abstract

The distributed SLAM system has a similar estimation performance and requires only one-fifth of the computation time compared with centralized particle filter. However, particle impoverishment is inevitably because of the random particles prediction and resampling applied in generic particle filter, especially in SLAM problem that involves a large number of dimensions. In this paper, particle filter use in distributed SLAM was improved in two aspects. First, we improved the important function of the local filters in particle filter. The adaptive values were used to replace a set of constants in the computational process of importance function, which improved the robustness of the particle filter. Second, an information fusion method was proposed by mixing the innovation method and the number of effective particles method, which combined the advantages of these two methods. And this paper extends the previously known convergence results for particle filter to prove that improved particle filter converges to the optimal filter in mean square as the number of particles goes to infinity. The experiment results show that the proposed algorithm improved the virtue of the DPF-SLAM system in isolate faults and enabled the system to have a better tolerance and robustness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Motion*
  • Robotics / methods*