This paper describes the design, synthesis, and biological evaluation of peptidomimetic boronates as inhibitors of the 20S proteasome, a validated target in the treatment of multiple myeloma. The synthesized compounds showed a good inhibitory profile against the ChT-L activity of 20S proteasome. Compounds bearing a β-alanine residue at the P2 position were the most active, that is, 3-ethylphenylamino and 4-methoxyphenylamino (R)-1-{3-[4-(substituted)-2-oxopyridin-1(2H)-yl]propanamido}-3-methylbutylboronic acids (3 c and 3 d, respectively), and these derivatives showed inhibition constants (Ki ) of 17 and 20 nM, respectively. In addition, they co-inhibited post glutamyl peptide hydrolase activity (3 c, Ki=2.57 μM; 3 d, Ki=3.81 μM). No inhibition was recorded against the bovine pancreatic α-chymotrypsin, which thus confirms the selectivity towards the target enzyme. Docking studies of 3 c and related inhibitors into the yeast proteasome revealed the structural basis for specificity. The evaluation of growth inhibitory effects against 60 human tumor cell lines was performed at the US National Cancer Institute. Among the selected compounds, 3 c showed 50% growth inhibition (GI50) values at the sub-micromolar level on all cell lines.
Keywords: anticancer agents; boronates; bortezomib; docking studies; inhibitors; peptidomimetics; proteasomes.
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.