The chaperone-like protein 14-3-3η interacts with human α-synuclein aggregation intermediates rerouting the amyloidogenic pathway and reducing α-synuclein cellular toxicity

Hum Mol Genet. 2014 Nov 1;23(21):5615-29. doi: 10.1093/hmg/ddu275. Epub 2014 Jun 3.

Abstract

Familial and idiopathic Parkinson's disease (PD) is associated with the abnormal neuronal accumulation of α-synuclein (aS) leading to β-sheet-rich aggregates called Lewy Bodies (LBs). Moreover, single point mutation in aS gene and gene multiplication lead to autosomal dominant forms of PD. A connection between PD and the 14-3-3 chaperone-like proteins was recently proposed, based on the fact that some of the 14-3-3 isoforms can interact with genetic PD-associated proteins such as parkin, LRRK2 and aS and were found as components of LBs in human PD. In particular, a direct interaction between 14-3-3η and aS was reported when probed by co-immunoprecipitation from cell models, from parkinsonian brains and by surface plasmon resonance in vitro. However, the mechanisms through which 14-3-3η and aS interact in PD brains remain unclear. Herein, we show that while 14-3-3η is unable to bind monomeric aS, it interacts with aS oligomers which occur during the early stages of aS aggregation. This interaction diverts the aggregation process even when 14-3-3η is present in sub-stoichiometric amounts relative to aS. When aS level is overwhelmingly higher than that of 14-3-3η, the fibrillation process becomes a sequestration mechanism for 14-3-3η, undermining all processes governed by this protein. Using a panel of complementary techniques, we single out the stage of aggregation at which the aS/14-3-3η interaction occurs, characterize the products of the resulting processes, and show how the processes elucidated in vitro are relevant in cell models. Our findings constitute a first step in elucidating the molecular mechanism of aS/14-3-3η interaction and in understanding the critical aggregation step at which 14-3-3η has the potential to rescue aS-induced cellular toxicity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 14-3-3 Proteins / chemistry
  • 14-3-3 Proteins / genetics
  • 14-3-3 Proteins / metabolism*
  • Amyloidosis / metabolism*
  • Humans
  • Kinetics
  • Protein Aggregation, Pathological*
  • Protein Binding
  • Protein Isoforms
  • Signal Transduction*
  • alpha-Synuclein / chemistry
  • alpha-Synuclein / genetics
  • alpha-Synuclein / metabolism*

Substances

  • 14-3-3 Proteins
  • Protein Isoforms
  • alpha-Synuclein