Objective: To reconstruct the local HIV-1 transmission network from 1996 to 2011 and use network data to evaluate and guide efforts to interrupt transmission.
Design: HIV-1 pol sequence data were analyzed to infer the local transmission network.
Methods: We analyzed HIV-1 pol sequence data to infer a partial local transmission network among 478 recently HIV-1 infected persons and 170 of their sexual and social contacts in San Diego, California. A transmission network score (TNS) was developed to estimate the risk of HIV transmission from a newly diagnosed individual to a new partner and target prevention interventions.
Results: HIV-1 pol sequences from 339 individuals (52.3%) were highly similar to sequences from at least one other participant (i.e., clustered). A high TNS (top 25%) was significantly correlated with baseline risk behaviors (number of unique sexual partners and insertive unprotected anal intercourse (p = 0.014 and p = 0.0455, respectively) and predicted risk of transmission (p<0.0001). Retrospective analysis of antiretroviral therapy (ART) use, and simulations of ART targeted to individuals with the highest TNS, showed significantly reduced network level HIV transmission (p<0.05).
Conclusions: Sequence data from an HIV-1 screening program focused on recently infected persons and their social and sexual contacts enabled the characterization of a highly connected transmission network. The network-based risk score (TNS) was highly correlated with transmission risk behaviors and outcomes, and can be used identify and target effective prevention interventions, like ART, to those at a greater risk for HIV-1 transmission.