Poultry meat contains large quantities of polyunsaturated fatty acids, which lead to oxidative deterioration. Plant essential oils (EO) and natural compounds, with antioxidant properties, may be used to alleviate this problem. Two replications were conducted to evaluate the effects of a mixture (1:1) of thyme and orange oils (EO) on the quality characteristics and the oxidative stability of chicken meat (breast and wing). For each replication, 24 fresh breast fillets and 24 wings were procured from a local grocery store. The EO were added to marinade solution to achieve a final concentration of 0.55% sodium chloride, 0.28% polyphosphate, and 0.05% wt/vol of EO blend. Breasts and wings were split in 2 different groups with homogenous pH and lightness and vacuum tumbled in 2 treatments, a 0.5% EO and a control (CON, no EO). Each group was tested for pH, Commission Internationale d'Eclairage color (lightness, L*; redness, a*; yellowness, b*), moisture content, marinade uptake, purge loss, cook yield, and shear force. Susceptibility to lipid oxidation was determined on fresh and frozen meat by TBA reactive substance analysis (induced oxidation from 0 to 150 min at 37°C). The EO breasts had lower purge loss compared with CON meat. Breast did not show any color, pH, marinade uptake, cooking yield, shear force, or moisture differences due to treatment, although cooked EO breast was slightly less red than CON. The EO wings presented higher a* and b* values after marination and lower purge loss and shear force than CON. No differences were detected on wings for color, pH, marinade uptake, cooking yield, or moisture between EO and CON wings. Both fresh and frozen EO breasts and EO wings were less susceptible to the lipid oxidation during all induced oxidation times compared with CON breasts and wings. In conclusion, EO had a positive effect on broiler breast and wing lipid oxidation without negatively affecting meat quality traits.
Keywords: broiler; chicken meat; essential oil; lipid oxidation; meat quality.
© Poultry Science Association Inc.